
EULERIAN TIME-DOMAIN FILTERING FOR SPATIAL LES

C. DAVID PRUETT

Department of Mathematic8

James Madison Universit_t

Harrisonburg, VA P,_807

Abstract. Eulerian time-domain filtering _to be appropriate for LES

of flows whose large coherent structures con_t approximately at a com-

mon characteristic velocity; e.g., _ h_ jets, and wakes. For these

flows, we develop an approach to LES _ on an explicit second-order

digital Butterworth filter, which is applied inthe time domain in an Eule-

rian context. The approach is validated thrg_ugh a p_on and a poaterior_

analyses of the simulated flow of a heated, _bsonic, axisymmetric jet.

1. Introduction . __,

Historically, large-eddy simulation (LES) has relied upon spatial rather
than time-domain filters. Conceptually, however, filtering in time would _ _ _

seem to enjoy certain advantages. First, t_ D_S-LES-RANS spectrum of . i _
be serf-consistentnumerical approaches would _if time-domain filtering were

exploited for LES as it is for RANS. Second, as observed by Frisch (1995)

"Most experimental data on fully developed turbulence are obtained in the....... :_

time domain and then recast into the space domain via the Taylor hypoth-
esis." If time-domain analysis is natural fW _el_anents, one wonders why

spatial re-interpretation is necessary or desirable. Third, differentiation-

operator/filter-operator commutation'm_tspr0blematic for spatial filter-

ing on finite domains (Blalsdell, 1997, and Vasilyev et al, 1998). Fourth,

according to Moin and Jimenez (1993): _in LES, it is highly desirable for :

the filter width to be significantly larger than the computational mesh to

separate the numerical and modeling errors. _tic_ considerations, how-.....
ever, usually require the filter width and mesh to be of the same order. In

this case, there does not appear to be a _ty for higher than second

order numerical methods for LES." In contta_, for the present temporally
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is, limt-_-_ G(t, A) = 0), th_n partial differentiation ancF_R_ing Com-

mute. As an example of a kernel that satisfies these constraints, consider

G(t, A) - H(t + A)/A, where H is the Heaviside function, and whe_by -_

_(t) - f__a _(_)d1". Because bounded support is the norm for time-dom_n

filters, but not for spatial filters (Blaisdell, 1997), time-domain filtering :_

enjoys a natural advantage with respect to commutation error.

2.2. DISCRETE CAUSAL FILTERS _

The discrete analog of Eq. 1 is _i m= _j=0py_bi_j, where _b_= _.b(iAt, x) and
At is a (fixed) time increment. In general, the coefficients pj depend on

the quadrature rule used to approximate the integral of Eq. 1, the specific

kernel G, and the width A. Following Press et al. (1986), a more versatile

digital filter-of recursive type-is given by

m Tt

jffi0 kffil

whereby _i is a linear combination of previous unfiltered and filtered values.
From Press et al. (1986), the frequency response of recursive filters of the _

form of Eq. 3 is _ '

ETf°P (4)
H(f_) - 1 - _=! qhe -'kh

where L = v/'L'T, f_ = w'At* is the dimensionless f_quency, and f* and w* ffi

27r/* are the dimensional physical and circular frequencies, respectively.

(Throughout the paper, we denote dimensional quantities by asterisks,) _
A class of recursive filters well-suited toLES is the "Butterworth n class.

Low-pass digital Butterworth filters have the trait that P0 vanishes in Eq. 3,

which renders them fully explicit in time. The design of Butterworth filters

of various order properties is discussed in Strum and Kirk (1988), to which

the reader is referred. As our prototype, we adopt a second-order Butter-

worth filter, whose frequency response is shown in Fig. 1. The prototype,
f" ' _1

with a nominal cutoff frequency of G_e,_ _ Js _endered tunable by the in-
troduction of a cutoff parameter, Rc ffi f]c_"ffi At�A, defined as the ratio

of the actual cutoff to that of the prototype,_ T_action of the filter on a
harmonically rich signal is shown in Fig. 2_or s_ted values of P_.

Time-domain filters suffer some d'm_dvantages relative to spatial filters.

First, they require storage of past informati_i/_/the higher the order, the

more storage. In particular, our second-_rder '_filter requires four fields of

storage for each field filtered. However, relative to DNS, the net storage

savings of temporally filtered LES r_ substantial. Moreover, time-

domain filtering, which is one-dimensional, rC_ts in less computational



where D -- _ is the resOlved-scale dilatation, S_j -- 2(_j i.__ _D_j), 60

is the Kronecker delta, _,j = ½[_ + --._] is the resolved-scale strain-

rate tensor, and @ is the dissipation function. For brevity, the physical

viscosity and thermal conductivity are denoted, respectively, as Pv = _/Re _ _ •

and r_ = _/(M2Repr), where Re, Pr, and M are the Reynol_, Prandtl, r

and Mach numbe_, respectively. Similarly, the ed@ viscosity and the eddy
thermal conductivity are given, respectively, by#_ = Crl2pII x/2 and r_=- _ .....

pT/('yM2PrT), where/ is a length scale, PrT _ the turbulent Prandtl
number, _ is the ration'of specific heats, and l'I =: _ij_j. ,_:_i_ _._ , :,

Of mixed type, the SEZHu model incorporates both scale-similarity
and eddy-viscosity terms, which are underlined on the left and right sides

of the equations above, respectively. In the momentum equation, for exam-

ple, the underlined terms together model _'ij -- ]_(_j - _), the exact

residual-stress tensor. The CNSE are recovered whenever the underlined _
terms are turned off, which renders the equations valid for either DNS or

LES. For LES, the SGS model requires values for three constants. Following

Erlebacher et al. (1992), we use PrT -- 0.5, Cr = 0.012, and i - 2Az.

For the axisymmetric jet-flow application, we exploit a cylindrical co-:

ordinate system, for which z (_1) and z (_l) are_,;the axial and radial co- • :
ordinates (velocities), respectively. Because ofar_isymmetry, the azimuthal _,

coordinate (0) does not come into play.

4. Galilean Invariance -:-_:

Speziale (1987) raises issues regarding Ga!i'lean " invariance and Eulerian
time-domain _ters. Ultimately, one can circumvent the issue by imple-

menting temporal filtering in a Lagrangian fr_f reference, as has been
proposed by Meneveau et al. (1996). However, Lagrangiau time-filtered ap- •

proaches suffer at least one drawback, namely the_ introduction of additional ._!;
closure equations, which renders SGS models potentially as computation-

ally cumbersome as Reynolds-stress modell, The:, ;Eulerian time-domain
filtering would be preferable whenever it _ appropriate, which _ the subject

of this section. .... _: :

4.1. DOPPLER EFFECT

Speziale(1985)shows thatthe spatiallyfiltered_ofa Galilean-invariant

functionisitselfGali_-invariant. Subsequ_i (Speziale,1987),he ira-_ ;....

pliesthatthesame isnot trueoftime-do_ _,,which we have verified:

In our words,although thegoverningequations_t_m_Ives are Galileanin-

variant for time-domain filters, the indivi4u_:tom_ of those equations are

not. In essence, Eulerian temporally filtered qmmt_ experience a Doppler



jet temperature Tj* = !600F (on which Mach number is_)_ambient _ -_ •

temperature T_ - 70F, nominal jetradiusR_ = 0,5 in.,ambient pressure!_ _

p_ - 216 psf., and Re -I0153 (based on the jet conditions and,the!jet ra-

dins). The jet is assumed to be axisymmetric and fully expanded, in which
case, in the absence of disturbances, the pressure is constant both radially _._ :

and axially.

In the Results _ection to follow, :iengths have been normalized by_, r:

and the velocities, temperature, and density,_i:hsve been normalized by _r_, _

Tj*, and p_, respectively.
• , ._ ,_

6. Numerical Methodology ..... _

i •

We view spatialDNS and LES as three-stepprocesses.First,an unper-

turbed time-independentbase stateisobtained by boundary-layertech-

niques (Pruett,1996).Second, the base state issubjected to temporsUy

periodicperturbations;here,theseareimpomi_through the streamwise_

locityatthe computational inflowboundary, Ssper Mankbadi etsl.,(1994). _ :- :

Numerical experimentationrevealsmost rapid.developmentofthe jetfor8 ....

Strouhal number (St = f_R_/U_) of 0.5_ where f_ is the fundamental forc- _ _ o
ing frequency. An out-of-phase subharmonic is _ included to enhance the _i .._

pairing of adjacent vortices. The forcing amptitudeis small-half a percent

of U_ for the fundamental-and the forcing _ ia rmaped up slowly to rain- •
imize temporal transients. Third, the sptt|_l_evolution of the propagating _

disturbances is computed by numerical solution of the unfiltered (DNS) or

filtered (LES) CNSE, as discussed below, • _:

For both DNS and LES, we adapt the high-order numerical scheme of

Pruett et al. (1995), to which the reader is_zefen_ for details. Briefly, this

algorithm exploits fully explicit time adw_aeement, high-order compact-
difference methods (Lele, 1992) for aperiodic spatial dimensions, and spec-

tral collocation methods for periodic spsti_t_ions. Specifically, for

the present axisymmetric-jet appliea_an, we:ttw fourth- and sixth-order

compact-difference schemes in the sxial, aB,ad a,edial_dimensions, respectively.

(The azimuthal dimension does not:_:m_ int_lMay because of the axisym-

metry assumption.) The original method, o_ Pruett et al. (1995) used a

variable step for time advancement in the._ohtext of a third-order Rtmge-

Kutta (RK3) scheme. However, the premU hES_pplication, which involves

temporal filtering, requires a constant time.elmp;'C<msequently, the original

RK temporal integration has been replsced_iby.'_t fzxed-length, third-order

Adams-Bashforth (AB3) technique. " _ ....

Regarding boundary conditions, for both DNS and LES, symmetry con- _
ditions are imposed along the jet axis (z =O)._ At!the inflow boundary, we -

specify v, to, T, and the incoming Riemann invariants. At the far-field _



Rc = 0.015625 as cutoffs for the grid and test filters, resp_jti_ly; hence,

r = 2. (The grid-filter cutoff value is consistent with P_ = 0.125 for the

LES calculation below, of coarser time resolution.) When adjusted for the

phase lag of the test filter, correlations of 0.90 are obtained.

Following Liu et al. (1994), we also present results for r - I. Whereas

r -- 1 is disallowed by conventional dynamic SGS models, Taylor-series

analysis (Pruett, 1997) suggests that r - I is optimal for second-order filters

in that the leading-order error term vanishes in the approximation of _'ij by

£0" In this case, the correlation coefficients exceed 0.998 when corrected
for the phase lag of the test filter. Moreover, coefficients on the order of 0.7
are obtained when the resolved and residual stresses are correlated at the

same instant in time, without correction.

Present a priori tests suggests that strong correlations exist bet_veen

the _'0 and £O, as observed also for spatial filters. We note that for r --- I,
the stress-similaritymodel of Liu et al. (1994) is ,equivalent to the SEZHu

model of Section 3 with its dissipative term turned off. It is well known,

however, the similarity models alone are insufflcientlydissipative for prac-

tical applications to LES. Hence, we consider an a posteriori test of the full
SEZHu model.

7.2. LES

The SEZHu SGS model was implemented with no changes other than the

incorporation of time-domain filtering in lieu of spatial filtering for the

similarity term, which we evaluate in real time, Some numerical experi-

mentation was necessary to find an app_prlate level of dissipation. If the

SGS model is insufficiently dissipative, the computation blows up. On the

other hand, if the model is excessively dissipative, the instabilities that re-

suit in vortex shedding and pairing are suppressed. Because most model

parameters were set for consistency with Erlebacher et al. (1992), dissi-
pation was controlled by experimenting with grid resolution and with the

test-filter cutoff Re. Figure 5 presents instantaneous contours of constant

density at tp - 18 obtained from an LES computation of 432 × 192 spatial
resolution, P_ - 0.125, and r - 2. Because fully explicit numerical schemes

are typically over-resolved in time, it is natural that A >> At (Re << I).

Whereas the DNS calculation required 40 (_PU hours, the coarser LES cal-

culation required but two hours. Relative tothe DNS results of Fig. 3, the

shear-layer roll-up and pairing events of the LES computation are retarded

but not prevented. Consequently, we believe tlmt moderately resolved LES
could serve as a computational platform for, investigations of jet noise, and

that a SGS model builton Eulerian time.domain lilteringis well-suited for

this task. To this end, we extract the compressible dilatation from the LES
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